Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Journal of Veterinary Science ; : e41-2023.
Article in English | WPRIM | ID: wpr-977143

ABSTRACT

Competencies are defined as an observable and assessable set of knowledge, skills, and attitudes. Graduation competencies, which are more comprehensive, refer to the required abilities of students to perform on-site work immediately after graduation. As graduation competencies set the goal of education, various countries and institutions have introduced them for new veterinary graduates. The Korean Association of Veterinary Medical Colleges has recently established such competencies to standardize veterinary education and enhance quality levels thereof. The purpose of this study is to describe the process of establishing graduation competencies as well as their implication for veterinary education in Korea.Graduation competencies for veterinary education in Korea comprise 5 domains (animal health care and disease management, one health expertise, communication and collaboration, research and learning, and veterinary professionalism). These are further divided into 11 core competencies, and 33 achievement standards, which were carefully chosen from previous case analyses and nation-wide surveys. Currently, graduation competencies are used as a standard for setting clear educational purposes for both instructors and students. Establishing these competencies further initiated the development of detailed learning outcomes, and of a list of basic veterinary clinical performances and skills, which is useful for assessing knowledge and skills. The establishment of graduation competencies is expected to contribute to the continuous development of Korean veterinary education in many ways. These include curriculum standardization and licensing examination reform, which will eventually improve the competencies of new veterinary graduates.

2.
The Korean Journal of Parasitology ; : 329-339, 2021.
Article in English | WPRIM | ID: wpr-903875

ABSTRACT

Ion channels are important targets of anthelmintic agents. In this study, we identified 3 types of ion channels in Ascaris suum tissue incorporated into planar lipid bilayers using an electrophysiological technique. The most frequent channel was a large-conductance cation channel (209 pS), which accounted for 64.5% of channels incorporated (n=60). Its open-state probability (Po) was ~0.3 in the voltage range of –60~+60 mV. A substate was observed at 55% of the main-state. The permeability ratio of Cl- to K+ (PCl/PK) was ~0.5 and PNa/PK was 0.81 in both states. Another type of cation channel was recorded in 7.5% of channels incorporated (n=7) and discriminated from the large-conductance cation channel by its smaller conductance (55.3 pS). Its Po was low at all voltages tested (~0.1). The third type was an anion channel recorded in 27.9% of channels incorporated (n=26). Its conductance was 39.0 pS and PCl/PK was 8.6±0.8. Po was ~1.0 at all tested potentials. In summary, we identified 2 types of cation and 1 type of anion channels in Ascaris suum. Gating of these channels did not much vary with voltage and their ionic selectivity is rather low. Their molecular nature, functions, and potentials as anthelmintic drug targets remain to be studied further.

3.
Journal of Veterinary Science ; : e71-2021.
Article in English | WPRIM | ID: wpr-901468

ABSTRACT

Background@#African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. @*Objectives@#This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. @*Methods@#We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. @*Results@#Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. @*Conclusions@#The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.

4.
Journal of Veterinary Science ; : e33-2021.
Article in English | WPRIM | ID: wpr-901459

ABSTRACT

Very virulent infectious bursal disease virus (vvIBDV) causes high mortality in chickens but measures to reduce the mortality have not been explored. Chickens (8–9 weeks) were treated with 3 agents before and during vvIBDV inoculation. Dexamethasone treatment reduced the mortality of infected chickens (40.7% vs. 3.7%; p < 0.001), but treatment with aspirin or vitamin E plus selenium did not affect the mortality. The bursa of Fabricius appeared to have shrunk in both dead and surviving chickens (p < 0.01). The results indicate that dexamethasone can reduce mortality in vvIBDV-infected chickens and may provide therapeutic clues for saving individual birds infected by the virus.

5.
The Korean Journal of Parasitology ; : 329-339, 2021.
Article in English | WPRIM | ID: wpr-896171

ABSTRACT

Ion channels are important targets of anthelmintic agents. In this study, we identified 3 types of ion channels in Ascaris suum tissue incorporated into planar lipid bilayers using an electrophysiological technique. The most frequent channel was a large-conductance cation channel (209 pS), which accounted for 64.5% of channels incorporated (n=60). Its open-state probability (Po) was ~0.3 in the voltage range of –60~+60 mV. A substate was observed at 55% of the main-state. The permeability ratio of Cl- to K+ (PCl/PK) was ~0.5 and PNa/PK was 0.81 in both states. Another type of cation channel was recorded in 7.5% of channels incorporated (n=7) and discriminated from the large-conductance cation channel by its smaller conductance (55.3 pS). Its Po was low at all voltages tested (~0.1). The third type was an anion channel recorded in 27.9% of channels incorporated (n=26). Its conductance was 39.0 pS and PCl/PK was 8.6±0.8. Po was ~1.0 at all tested potentials. In summary, we identified 2 types of cation and 1 type of anion channels in Ascaris suum. Gating of these channels did not much vary with voltage and their ionic selectivity is rather low. Their molecular nature, functions, and potentials as anthelmintic drug targets remain to be studied further.

6.
Journal of Veterinary Science ; : e71-2021.
Article in English | WPRIM | ID: wpr-893764

ABSTRACT

Background@#African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. @*Objectives@#This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. @*Methods@#We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. @*Results@#Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. @*Conclusions@#The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.

7.
Journal of Veterinary Science ; : e33-2021.
Article in English | WPRIM | ID: wpr-893755

ABSTRACT

Very virulent infectious bursal disease virus (vvIBDV) causes high mortality in chickens but measures to reduce the mortality have not been explored. Chickens (8–9 weeks) were treated with 3 agents before and during vvIBDV inoculation. Dexamethasone treatment reduced the mortality of infected chickens (40.7% vs. 3.7%; p < 0.001), but treatment with aspirin or vitamin E plus selenium did not affect the mortality. The bursa of Fabricius appeared to have shrunk in both dead and surviving chickens (p < 0.01). The results indicate that dexamethasone can reduce mortality in vvIBDV-infected chickens and may provide therapeutic clues for saving individual birds infected by the virus.

8.
Journal of Veterinary Science ; : 28-2020.
Article in English | WPRIM | ID: wpr-782508

ABSTRACT

No abstract available.

9.
Journal of Veterinary Science ; : e17-2019.
Article in English | WPRIM | ID: wpr-758891

ABSTRACT

No abstract available.


Subject(s)
Periodicals as Topic , Publishing , Veterinary Medicine
10.
Journal of Veterinary Science ; : 172-178, 2018.
Article in English | WPRIM | ID: wpr-758803

ABSTRACT

It has been reported that Korean red ginseng (KRG), a valuable and important traditional medicine, has varied effects on the central nervous system, suggesting its activities are complicated. The paraventricular nucleus (PVN) neurons of the hypothalamus has a critical role in stress responses and hormone secretions. Although the action mechanisms of KRG on various cells and systems have been reported, the direct membrane effects of KRG on PVN neurons have not been fully described. In this study, the direct membrane effects of KRG on PVN neuronal activity were investigated by using a perforated patch-clamp in ICR mice. In gramicidin perforated patch-clamp mode, KRG extract (KRGE) induced repeatable depolarization followed by hyperpolarization of PVN neurons. The KRGE-induced responses were concentration-dependent and persisted in the presence of tetrodotoxin, a voltage sensitive Na+ channel blocker. The KRGE-induced responses were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (10 µM), a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, but not by picrotoxin, a type A gamma-aminobutyric acid receptor antagonist. The results indicate that KRG activates non-NMDA glutamate receptors of PVN neurons in mice, suggesting that KRG may be a candidate for use in regulation of stress responses by controlling autonomic nervous system and hormone secretion.


Subject(s)
Animals , Mice , 6-Cyano-7-nitroquinoxaline-2,3-dione , Autonomic Nervous System , Central Nervous System , Glutamic Acid , Gramicidin , Hypothalamus , Medicine, Traditional , Membranes , Mice, Inbred ICR , Neurons , Panax , Paraventricular Hypothalamic Nucleus , Patch-Clamp Techniques , Picrotoxin , Receptors, GABA , Receptors, Glutamate , Tetrodotoxin
11.
Journal of Veterinary Science ; : 1-1, 2018.
Article in English | WPRIM | ID: wpr-758786

ABSTRACT

No abstract available.


Subject(s)
Societies, Medical , Periodicals as Topic , Organizational Objectives
12.
Journal of Veterinary Science ; : 483-491, 2018.
Article in English | WPRIM | ID: wpr-758837

ABSTRACT

The hypothalamic paraventricular nucleus (PVN) contains two types of neurons projecting to either the rostral ventrolateral medulla (PVN(RVLM)) or the intermediolateral horn (IML) of the spinal cord (PVN(IML)). These two neuron groups are intermingled in the same subdivisions of the PVN and differentially regulate sympathetic outflow. However, electrophysiological evidence supporting such functional differences is largely lacking. Herein, we compared the electrophysiological properties of these neurons by using patch-clamp and retrograde-tracing techniques. Most neurons (>70%) in both groups spontaneously fired in the cell-attached mode. When compared to the PVN(IML) neurons, the PVN(RVLM) neurons had a lower firing rate and a more irregular firing pattern (p < 0.05). The PVN(RVLM) neurons showed smaller resting membrane potential, slower rise and decay times, and greater duration of spontaneous action potentials (p < 0.05). The PVN(RVLM) neurons received greater inhibitory synaptic inputs (frequency, p < 0.05) with a shorter rise time (p < 0.05). Taken together, the results indicate that the two pre-sympathetic neurons differ in their intrinsic and extrinsic electrophysiological properties, which may explain the lower firing activity of the PVN(RVLM) neurons. The greater inhibitory synaptic inputs to the PVN(RVLM) neurons also imply that these neurons have more integrative roles in regulation of sympathetic activity.


Subject(s)
Animals , Action Potentials , Fires , Horns , Inhibitory Postsynaptic Potentials , Membrane Potentials , Neurons , Paraventricular Hypothalamic Nucleus , Patch-Clamp Techniques , Spinal Cord , Spinal Cord Lateral Horn
13.
Journal of Veterinary Science ; : 261-262, 2017.
Article in English | WPRIM | ID: wpr-115782

ABSTRACT

No abstract available.

14.
The Korean Journal of Physiology and Pharmacology ; : 177-181, 2015.
Article in English | WPRIM | ID: wpr-728527

ABSTRACT

The subfornical organ (SFO) is one of circumventricular organs characterized by the lack of a normal blood brain barrier. The SFO neurons are exposed to circulating glutamate (60~100 microM), which may cause excitotoxicity in the central nervous system. However, it remains unclear how SFO neurons are protected from excitotoxicity caused by circulating glutamate. In this study, we compared the glutamate-induced whole cell currents in SFO neurons to those in hippocampal CA1 neurons using the patch clamp technique in brain slice. Glutamate (100 microM) induced an inward current in both SFO and hippocampal CA1 neurons. The density of glutamate-induced current in SFO neurons was significantly smaller than that in hippocampal CA1 neurons (0.55 vs. 2.07 pA/pF, p0.05). These results demonstrate that glutamate-mediated action through non-NMDA glutamate receptors in SFO neurons is smaller than that of hippocampal CA1 neurons, suggesting a possible protection mechanism from excitotoxicity by circulating glutamate in SFO neurons.


Subject(s)
Animals , Rats , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Blood-Brain Barrier , Brain , Central Nervous System , Glutamic Acid , Hippocampus , Kainic Acid , N-Methylaspartate , Neurons , Receptors, Glutamate , Subfornical Organ
15.
The Korean Journal of Physiology and Pharmacology ; : 163-169, 2011.
Article in English | WPRIM | ID: wpr-727886

ABSTRACT

Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p<0.01 by chi2-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.


Subject(s)
Animals , Mice , Anterior Hypothalamic Nucleus , Brain , Corticosterone , Fires , GABAergic Neurons , Mice, Transgenic , Mifepristone , Neurons , Paraventricular Hypothalamic Nucleus , Plastics , Receptors, Glucocorticoid , Receptors, Mineralocorticoid , Receptors, Steroid , RNA, Messenger , Spironolactone , Synaptic Transmission
16.
Journal of Veterinary Science ; : 35-40, 2011.
Article in English | WPRIM | ID: wpr-47191

ABSTRACT

Voltage-gated K+ (Kv) channels have been considered to be a regulator of membrane potential and neuronal excitability. Recently, accumulated evidence has indicated that several Kv channel subtypes contribute to the control of cell proliferation in various types of cells and are worth noting as potential emerging molecular targets of cancer therapy. In the present study, we investigated the effects of the Kv1.1-specific blocker, dendrotoxin-kappa (DTX-kappa), on tumor formation induced by the human lung adenocarcinoma cell line A549 in a xenograft model. Kv1.1 mRNA and protein was expressed in A549 cells and the blockade of Kv1.1 by DTX-kappa, reduced tumor formation in nude mice. Furthermore, treatment with DTX-kappa significantly increased protein expression of p21Waf1/Cip1, p27Kip1, and p15INK4B and significantly decreased protein expression of cyclin D3 in tumor tissues compared to the control. These results suggest that DTX-kappa has anti-tumor effects in A549 cells through the pathway governing G1-S transition.


Subject(s)
Animals , Humans , Mice , Adenocarcinoma/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Elapid Venoms/pharmacology , Elapidae , /antagonists & inhibitors , Lung Neoplasms/drug therapy , Mice, Nude , Neoplasm Transplantation , Potassium Channel Blockers/pharmacology , RNA, Messenger/genetics , Transplantation, Heterologous
17.
The Korean Journal of Physiology and Pharmacology ; : 39-47, 2009.
Article in English | WPRIM | ID: wpr-728657

ABSTRACT

Gaegurin 4 (GGN4), an antimicrobial peptide isolated from a Korean frog, is five times more potent against Gram-positive than Gram-negative bacteria, but has little hemolytic activity. To understand the mechanism of such cell selectivity, we examined GGN4-induced K+ efflux from target cells, and membrane conductances in planar lipid bilayers. The K+ efflux from Gram-positive M. luteus (2.5microgram/ml) was faster and larger than that from Gram-negative E. coli (75microgram/ml), while that from RBC was negligible even at higher concentration (100microgram/ml). GGN4 induced larger conductances in the planar bilayers which were formed with lipids extracted from Gram-positive B. subtilis than in those from E. coli (p<0.01), however, the effects of GGN4 were not selective in the bilayers formed with lipids from E. coli and red blood cells. Addition of an acidic phospholipid, phosphatidylserine to planar bilayers increased the GGN4-induced membrane conductance (p<0.05), but addition of phosphatidylcholine or cholesterol reduced it (p<0.05). Transmission electron microscopy revealed that GGN4 induced pore-like damages in M. luteus and dis-layering damages on the outer wall of E. coli. Taken together, the present results indicate that the selectivity of GGN4 toward Gram-positive over Gram-negative bacteria is due to negative surface charges, and interaction of GGN4 with outer walls. The selectivity toward bacteria over RBC is due to the presence of phosphatidylcholine and cholesterol, and the trans-bilayer lipid asymmetry in RBC. The results suggest that design of selective antimicrobial peptides should be based on the composition and topology of membrane lipids in the target cells.


Subject(s)
Bacteria , Cholesterol , Erythrocytes , Fees and Charges , Gram-Negative Bacteria , Lipid Bilayers , Membrane Lipids , Membranes , Microscopy, Electron, Transmission , Peptides , Phosphatidylcholines , Protein Precursors
18.
Journal of Veterinary Science ; : 299-304, 2009.
Article in English | WPRIM | ID: wpr-53250

ABSTRACT

The vibrational spectral differences of normal and lung cancer cells were studied for the development of effective cancer cell screening by means of attenuated total reflection infrared spectroscopy. The phosphate monoester symmetric stretching nus(PO3(2-)) band intensity at ~970 cm-1 and the phosphodiester symmetric stretching nus(PO2-) band intensity at ~1,085 cm-1 in nucleic acids and phospholipids appeared to be significantly strengthened in lung cancer cells with respect to the other vibrational bands compared to normal cells. This finding suggests that more extensive phosphorylation occur in cancer cells. These results demonstrate that lung cancer cells may be prescreened using infrared spectroscopy tools.


Subject(s)
Humans , Carcinoma , Cell Line, Tumor , Epithelial Cells/physiology , Lung Neoplasms , Respiratory Mucosa/cytology , Spectrophotometry, Infrared
19.
Journal of Veterinary Science ; : 15-20, 2007.
Article in English | WPRIM | ID: wpr-126343

ABSTRACT

Organotypic slice cultures have been developed as an alternative to acute brain slices because the neuronal viability and synaptic connectivity in these cultures can be preserved well for a prolonged period of time. This study evaluated a stationary organotypic slice culture developed for the hypothalamic paraventricular nucleus (PVN) of rat. The results showed that the slice cultures maintain the typical shape of the nucleus, the immunocytochemical signals for oxytocin, vasopressin, and corticotropin-releasing hormone, and the electrophysiological properties of PVN neurons for up to 3 weeks in vitro. The PVN neurons in the culture expressed the green fluorescent protein gene that had been delivered by the adenoviral vectors. The results indicate that the cultured slices preserve the properties of the PVN neurons, and can be used in longterm studies on these neurons in vitro.


Subject(s)
Animals , Rats , Adenoviridae , Cell Culture Techniques/methods , Corticotropin-Releasing Hormone/metabolism , Electrophysiology , Genetic Vectors , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Neurons/cytology , Oxazines , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/anatomy & histology , Vasopressins/metabolism
20.
The Korean Journal of Physiology and Pharmacology ; : 71-80, 2002.
Article in English | WPRIM | ID: wpr-728069

ABSTRACT

Previous studies have suggested that brain stem noradrenergic inputs differentially modulate neurons in the paraventricular nucleus (PVN). Here, we compared the effects of norepinephrine (NE) on spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) in identified PVN neurons using slice patch technique. In 17 of 18 type I neurons, NE (30-100microM) reversibly decreased sIPSC frequency to 41+/-7% of the baseline value (4.4+/-0.8 Hz, p<0.001). This effect was blocked by yohimbine (2-20microM), an alpha2-adrenoceptor antagonist and mimicked by clonidine (50 microM), an alpha2-adrenoceptor agonist. In contrast, NE increased sIPSC frequency to 248+/-32% of the control (3.06+/-0.37 Hz, p<0.001) in 31 of 54 type II neurons, but decreased the frequency to 41+/-7% of the control (5.5+/-1.3 Hz) in the rest of type II neurons (p<0.001). In both types of PVN neurons, NE did not affect the mean amplitude and decay time constant of sIPSCs. In addition, membrane input resistance and amplitude of sIPSC of type I neurons were larger than those of type II neurons tested (1209 vs. 736 M omega, p<0.001; 110 vs. 81 pS, p<0.001). The results suggest that noradrenergic modulation of inhibitory synaptic transmission in the PVN decreases the neuronal excitability in most type I neurons via alpha2-adrenoceptor, however, either increases in about 60% or decreases in 40% of type II neurons.


Subject(s)
Brain Stem , Clonidine , Inhibitory Postsynaptic Potentials , Membranes , Neurons , Norepinephrine , Paraventricular Hypothalamic Nucleus , Synaptic Transmission , Yohimbine
SELECTION OF CITATIONS
SEARCH DETAIL